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Spacetime Ccordinate Systems.

Daoes the principle of covariance preclude the necessity for specifying a set of coordinates operationally ? There wilt be given a
simple example which illustrates the answer o this question, This leads to the basic problem of specifying coordinate systems of
physical use and interest over the vast reaches of spacetime. Examples of two operational definitions for spacetime networks asso-
ciated with the surface of the spinning earth serve to make definite some of the requirements, and show the importance and use

of the general Doppler effect. For space navigational purposes, the Doppler effect becomes a prime tool, Its uses and the relative
effects of gravita_tional fields, medium refraction and dispersion, and {nstrument uncertainty are to be discussed with some nume-
rical examplés. )

The point of view we have adopted here stems fram, but is not limited to, a consideration of general relativistic effects and uses
imuch of the formalism of relativity theory. It suggests moreover, a €W general approach to time synchronization, space comimu-
nication, and navigation problems, which is reminiscent of several concepts introduced by various authers. One of these is the ele-
mentary 4/3-earth notion of Schelling, Burrows, and Ferrell. & related one is the use of "hon"l_ologue" gpace to eliminate major re-
fraction effects in a medium. Still a third is Fock's concept of harmonic coordinates. These approaches will be explained in elabo~
rating the conceptual basis for this paper.

Systédmes de coordonnées espace-temps

Le principe de covariance rend-il superflue la nécessité de spécifier opérationnellement un systéme de eoordonnées 7 Un simple
exemple sera donné, illustrant 1a réponse & cette question. Cela mene au prabléme de base de la spécification des systemes de
caordonnées pour 1'usage et physique et intéressant une région étendue d'espace-temps. Deux exemples de définitions pratiques
pour des réseaux d'espace-temps associés a 1a surface de la teire en rotation servent 3 rendre explicites certaines exigences et

montrent 1'importance et L'utilisation de 1'effet Doppler général, Pour les besoins de la navigation spaciale, 1'effet Doppler ac-

‘quiert une importance primordiale. Ses utilisations ex les effets relatifs dus aux champs gravitationnels, ala réfraction du milieu,

a la dispersian et & 1'incertitude des instruments seroint discutés avec quelques exemples numeériques.

Le point de vue adopté ici s'appuie sur une considération d’effets de ta théorie de la relativité g'énérale et utilise largement le
formalisme de cette théorie, Ce point de vue suggere en plus une nouvelle fagon d'envisager la synchronisation du temps, les com-
munications spaciales et les problémes de navigation s'approchant ainsi de plusieurs conceptions fntroduites par divers auteurs. Une
de celles-ci est 1a notion élémentaire de ng/3-rerre” de Schelling, Burrows et Ferrell. Une notion analogue est celle de 1'espace
"homologue” utilisé pour sliminer des effets importants de réfraction dans un milieu. Enfin, il faut noter 1a notion de coordonnées
harmoniques de Fock. Ces différentes facons de s"approcher du probléme seront expliquées en €laborant le concepte de base de la
présente communication.

Raum~-Zeit Kocrdinatensysteme

Macht das Prinzip der Kovarianz es Uberfillssig, ein Koordinatensystem operationell besonders festzulegen ? Die Antwort zu dieser
Frage wird an einem einfactien Beispiel ertiutert werden, Dies fihre zum fundamentalen Problem, wie Koordinatensysteme zum
praktischen Gebrauch in der Physik und giittig liber grosse Raum-Zeit Bereiche spelzzifiziert werden sollen. Zwei Beispiele von prak-
tischen Definitionen fir Raum-Zeit-Netze, yerbunden mit der rotierenden Erdoberfliche, dienen dazn, gewisse Anforderungen
Kklarzustellen und zeigen die Bedeutung und die Verwendung des allgemeinen Dopplereffektes, Flir die Bediirfnisse der Raumschiff-
fahrt wird der Dopplereffekt zum wesentlichen Wetkéeug; Seine Anwendungen und die verschiedenen durch Gravitationsfelder,
Brechung und Dispersion der Umgebung, und instrumentelle Unschirfen bédingten Effekte werden an Hand von einigen nurnerischen
Beispielen besprochen. : .

Der hier vertretene Standpunkt stlitzt sich auf eine Betrachtung von Effekten der allgemeinen Relativititstheorie und verwendet we-
sentlich den Formalismmus dieser Theorie. Ven diesern Standpunkt aus ist es naheliegend, die Probleme der Zeitsynchronisierung,
Raumnfemverbindungen und der Raumfahrt auf neve Weise anzufassen in Anlehnung an verschiedene von verschiedenen Autoren ein-
geftihrten Begriffe, Einer dieser Begriffe ist der der elementaren %4/3-Erde™ von Schelling, Burrows und Ferrell. Ein verwandter Be-
griff ist die Verwendung des "liomologen" Raumes zur Ausscheidung von grisseren Brechungseffekten einer Umgebung. Schliesstich
sei Facks Begriff der harmonischen Koordinaten erwihnt. Diese verschiedenen Methoden werden im Verlauf der Erarbeitung der we-

' sentlichen Begriffe dieser Mitteilung erldutert werdei,
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1. Introduction

(A} Space Coordinates and Time _

Historically speaking, the thesis that time and its measurement
play a great role in the definition and use of spatial coordinate systems
is by no means new. For the need by the science of navigation for a
practicable and exact method for determination of ship longitudes linked
it with the science of chronometry--as is well-known. Astronomy, '
strengthened this bond in its eminently su'cces_sfu:l attempt to define a
uniform time scale in terms of the ephemerides of heavenly bodies.
This overt wedding of the two concepts ultimately took on a biologically
more suspect character, however. For it turned out that the happy
match was not only a convenient alliance between well-suited mates of
honorable but independent ancestry. A far deeper union appeared when
the theory of relativity aptly pointed out that time and space are no
longer completely independent modes of perception of events, but are
indissolubly united blood relatives.

‘Now, among other things, I wish to point out in this article some
_conseqqe'nces of these observations for the purposes of navigation. For
our age, this means navigation in space, although one example I shall
mention could apply, ideally, to navigation at the earth's surface. _
These considerations have a bearing too on the question of how important
it is to disseminate time over extensive regions of spacetime; and they
will bear on the question of the use of spacetime coordinate systems,
not only for engineering application, but for scientific purposes. For
" several fundamental questions raised by the theory of relativity--the
propagation of gravitational waves, the nature of gravitatidnal field
singularities, the proper solution of the field equations--are all linked
with the notion of spacetime coordinate systems.

(B} The Operational Viewpoint

_ Several writers have been very concerned with the notion of space-
time coordinate systems. One view held by some is that, since the
relativistic principle of covariance states that "any important physical
gquantity must have a value which is.independent of any particular choice
of coordinate system and be calculable in a form which is the same for
all systems', then the choice of the coordina(:ie?))system is immaterial.
To this we must object--along with V. Fock,' ~‘and J. L. Synge; arbi-
trariness in choice does not imply that no choice has to be made.
Indeed the choice must be made in a very specific operationally definable

IManner.

One ban_ see that this is so if he simply takes as his important
physical quantity some measure or aspect of the coordinate system
- itself. TFor example, consider the point, P, marked x = 2, 'y = 0,
referred to some system of axes . in a plane. Now which point this
~is may be very important--yet from the given information, and given
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the particular plane in question as a physical object, one could not tell
which point P is. For the point at the origin must first be specified,
the -direction of the x-axis {and whether it is straight or curired),' and
the perhaps non-uniform scale on it must all be specified before these
coordinates can be used to pick out P. Astronomers who use the fixed
stars as background coordinates can appreciate this point. Scientists
who wish to have the scale of proper time given in terms of a particu-
lar standard atomic frequency--say Hydrogen--will appreciate this
point. So let us accede and grant that coordinate systems ~-although
‘ideally not partaking in the physical phenomena they are used to des
scribe--must nevertheless be treated as physical objects which must
be determinable operationally. -

The choice of coordinates is very wide indeed--and it is important
that this be so. For if one has this freedom, many theoretical problems
and experimental determinations can be greatly sirhplified. This is
obvious. So one should take care when he 'imposes a restriction on
the class of coordinate systems. A classical example of such over-
restriction which has led to much confusion is the sometimes seen

dictum that in special relativistic treatments of phenomena no acceler- -
“ated coordinates may be allowed. This even got extended to mean no
accelerated motions could be considered in the framework of this theory--
in spite of the obvious example of Thomas precession to the contrary
notwithstanding. The restricting statement was clearly meant originally
to apply only to the important comparison of inertial systems of refer-
ence--nothing else. Now we have knocked down our straw men and can
get on with the game of specifying operationally some spacetime coordi-
nate systems,

II. Some Preliminary Examples

(A) Simplifying Conditions _ _

First I wish to simplify our problem as mu;ch as possible and con-
sider situations where gravitational fields are not present to complicate
the formulation. Many of the basic notions remain unchanged even if
such fields are present, and I shall show later what must be done to
include such effects. The same is true of variations in index of refrac-
tion of the interplanetary medium we might find ourselves in, to say
nothing of questions of dispersion and diffraction.

So what is left? Actually quite a bit. We can consider rotating
spherical coordinate systems,’ or uniformly accelerated ones, We can,
and in the main portion of the paper will, consider a very useful kind
which I shall call a range and - range-rate coordinate system=--named
after the similar but usually earth-bound, tracking method. 1) This
system is closely related, as we shall show, to coordinates known to

11




geometers as null—co?rdmates {(2,3). J. L. Synge in his excellent
treatise on Rela,tiirity also considers the. problem of detecting space-
time curvature and acceleration by operatmnal means. -We too shall
point out such a method. :

But in this section we shall assume, since our primary purpose is
different than this, that we can define, operationally, rectangular or
spherical inertial reference frames. These may be defined rather
tediously by the familiar radar and direction finding techniques.

(B} Inertial Coordinates .

Such a frame of reference may be visualized as that of the 'fixed
stars', or one moving with a constant speed relative to the fixed stars.
It is well-known that the proper time interval between two successive
events (ticks of a clock) happening to- a moving object is given by

.y

where: dx, dy, dz are spatial coordinate separations of two infinitesi-

mally near events on the trajectory of the object, dtf is their coordinate
time separation, ¢ is the speed of light, and v is the coordinate speed

of the object. To every event there is a set of these rectangular

coordinates t, X, ¥, z

If two events are connected by a continuous curve of events, the
sign of the expression
—2 —2. '’
2 —_
G = dr ﬁdtz_dx +c;y + dz
c

for two neighboring points on an element of such a traj.ectory tells.
whether the element is timelike (G is positive) or spacelike (G 1is
negative). If timelike the element can be regarded as a portion of the -
trajectory of an object--and dTis the elementary time interval measured
by a clock comoving with the object. If spacelike, a portion of a
suitably moving rigid meter stu:k Could be placed momentarily in coinci-
dence with the element, and {-c© d'r ) would be the square of the spat1a1
length of the .element.
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J1f we w1sh we can of course use spher1ca1 mertlal coordmates
(T, r, 0, © related in the usual way to the rectangular ones., Tra-

jectories, and spatial or temporal elements can be obkusly expressed
in terms of these as well.

(C) Coordinates on a Splnmng Spherical Surface

Now consider a rotating spherical surface as a simple example,
somewhat illustrative of our later analysis. A point P fixed on its
surfaceé has a spacetime trajectory described by the equations

t=2 ~
¥ =R
9= 8
©= ¢ +wk

where: R is the sphere's radius, 8, © are the fixed colatitude and _
longitude angles of the point, @ is the angular velocity and X is a time
parameter along the trajectory (not the particle's proper time')

1. Coordinate System {A)

One sees that the quantities X, 8, © specify the time and space
coordinates of events happening on the surface of the sphere. R and
are simply known constant parameters.

Operationally, Ais just the ''time'" at an event as read off some clock
located in the space outside but-very near the surface of the sphere at
the locus of the event in- question. All the inertial clocks in space are
fixed relative to the fixed stars and are synchronized and will run at the
same rates, that is, remain in synchronization, if they are identically
constructed and adjusted. A clock fastened to the spherical surface can
be adjusted to give the '"A-time" i.e. read the same value t_ as the
inertial clock in spacé near which it finds itself at any given instant.
But although these surface clocks may have similar construction,  the
rate adjustment which specifies A -time will depend on the latitude 8~~..
because of their motion relative to the fixed stars due to the spin. _
Hence these clocks will not all generate seconds--only the polar clock
will. This X-time is similar to our astronomically determined time.
Readings from other clocks which do generate seconds on the moving
surface (like standard atomic clocks) would diverge from the readings
from the coordinate \ ~time adjusted clocks. At the equator, taking
the speed v = Rw equal to the earth's equatorial speed of 500 m/s, the
A-time unit would be shorter by the factor \JI - v2/cZ than a second;
that is, these coordinate clocks at the equator would be adjusted to
run faster by 1.4 parts in. 1012 than those clocks on the earth's surface
which generate seconds. Only in this fashion could they keep in synchro-
nization with the spatial inertial clocks--which, in their fixed frame of
reference,; all generate standard seconds.
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The latitude and longitude angles 6, © of a point on the surface have
the usual conventional meanings. This is not the place to delve into the
question of practical navigational procedures for determining 8 and o.
We merely have wished to emphasize the close connection between time
and space coordinates in our example. This is accented if one writes
the expression for the ''metric'--thé expression of the squate of the tem-
poral or spatial interval in terms of spacetime coordinate differentials:

2
GA = ¢ d?\z - R2 [(dEﬁ)2 + sinze {dep + mdl)z]

¥rom this expression one can reaffirm the latitude dependence of the
proper length of the coordinate time unit; one also notices, that because
of the spinning motion the spatial part of the coordinate systém which
ordinarily is ''flat'', presents a twisted appearance from the spacetime
point of view. ' s '

2. Coordinate Syétem (B)

One may attempt to eliminate the foregoing latitude dependence of

. coordinate time by utilizing identical atomic clocks sprinkled over the

surface of the sphere., These would be synchronized initially so that
all clocks »n a circular meridian {(as judged from the fixed star inertial
system) are synchronized. But immediately it becomes clear that these
clocks. will not maintain synchronization as viewed from inertial clocks

distributed along a celestial meridian. Indeed the atomic ‘clocks at the

equator will lose time in relation to those on the celestial meridian.
From the viewpoint of an observer in space this is due to the relative
motion. For an observer on the surface, this is due to  the centrifugal
field. In any event, a meridian of longitude on the surface, defined to
be the locus of events which all happen at the same time as read on
the atomic clocks fixed to the surface, and which all have the same
value of @, of course, will present a distorted appearance relative to
the celestial meridian. For the clocks near the equator must travel
farther before they read the same time as the polar ones. One may
study this quantitatively By transforming the metric according to the

eguations
- ' L
t =71/ {1 - Rzmzsinzﬁ/cz} 2
8 =8 |
— >1 L
0w = o + w'r/{l - szzsinze/c } “
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Here T is the proper time read off the .atomic clock. The metric
becomes ' : '

2 . | | 2
_ cT 2 2
GB= : -R7|d8 +sin28 deop +d 2T

d
-‘/ 22 2,.,2 2.
1-R w'sin"0/c '\A -_R-;wzsinze/cz

From this we see that the length of the coordinate time unit of these
clocks (equal to the square root of the coefficient of cdT) is indeed
unity, i.e. one second. But the cross~produce term involving d0dep
shows that the angle between meridians {(as previously defined) and

parallels of latitude will become zero. in a rather short time. In fact
this time is | '

. 2.3/2
= (I—BZSlne) :8=Rw/c

oo} wBsin 8cosg B

which amounts to 500 years for R® equal to the earth's equatorial speed,
and 8 = 45°. At this time and ‘in this region the spacetime coordinates
as defined become physically meaningless (the singularity is only signifi-
cant over an exceedingly narrow belt around 45° latitude. As time goes
on this belt would widen gradually.)

_ S0 again we note the close connection between space and time in
defining operationally a spacetime coordinate system, and the care one
must use so that it will be utilizable.

(D) Eifects of Gravity :

Fortunately, one can avoid these questions--for an earth navigational
system-~for most practical purposes. But the difficulty in principle
still remains. Its avoidance in practice is a result of two additional
effects(5) which combine and tend to cancel out the foregoing clock rate
effect -due to spin (almost) entirely. These are

(1) effects of gravity

(2) non-sphericity of the earth.
A short discussion.of this will not only serve to quiet the practical
surface navigator's ‘fears, but will also introduce the essential connection
between metric components and gravitation discovered by Einstein. This
is very important for our later discussion.

Consider a clock which is stationary on the rotating earth's surface
at latitude 8. Then according to Einstein, the proper time interval
between successive instants is, in terms of the coordinate time interval
dx , . 2 2

: 69

M:
dr, =+ /1 + -~ = A\
C

3! 2

C
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where

59 = -(GME/R) {1 +£(6))

is the earth's gravitational potential per unit mass at 6, M_ is the

earth’s mass and R is its mean radius. £(0) corrects for %w
non-sphericity.

vy T Rew
is the corresponding speed of the earth's surface at this latitude due
to its spin w. For a clock at the pole, 9 = 0, and vy = 0, and we
have '
28
dr =7\ 1 +—2 a
o CZ

Let the two clocks read the same difference d)\ in coordinate time--
their physical state or phase differences are equal so that

vod'ro = \)ed're,

where v and v, are the respective proper {requencies of their ticking
rates (rélative to an atomic frequency standard}). Then

2
L -
Yo d"TB _ _ _60 - {3 M 68)
Y dr 2

8 o _ c

The earth's surface is one of practically zero hydrostatic é::-ee;sure,
as if it were a spinning gravitating fluid, and Lamb shows'"’ that

for such a geoidal shape. Thus the gravitational ''red shift'' fortuitously
cancels out the second order Doppler shift due to motion for clocks at
the earth's surface, ) '

The main point of all thig is that in order to specify a spacetime
coordinate system operationally, one must know not only the motions

involved but also the gravitational potentials. All these things are
included in the all-important expression for the metric of tempqral and
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spatial intervals. In any. spacetime coordinate system,. if dax (1:-; 0,1,2,
3} represent the differences of coordinates between two events, then
the spatial or temporal. interval is calculated from '

G =g, dx"ax)

(summed on 1, j)
The coefficients 8¢ ; which are generally functions of the x's specify
both the spacetime "curvature and the coordinate curvature properties

(perhaps due to motion). If G is positive, the interval is timelike,
and negative, if it ig spacelike.

III. Hamiltonian Optics

The examples have shown (1) the importance of the spacetime metric
in defining the pr'operties of a coordinate system and {2) the care one
must exercise in order to specify the coordinate system in an operational
way. Indeed we were (intentionally) somewhat vague about the specifi-
cation of latitude and longitude variables--because that was not our main
point, and because it is quite a complex question. As we shall soon
see, even for a class of cases specially tailored for relativistic treat-
ment, a complete definition like this is complicated.

It seems clear that to define the space and time variables of a
coordinate system one must rely heavily on theories of (electromagnetic)
wave motion. This has always been true, even in clagsical surveying,
or in taking sights on stars in navigation--and it is even more important
to base our operations on our theoretical knowledge of optics in view
of the prime importance of radio signals in space navigation. Conse-
quently, before we discuss our main subject (which is: null, or range
and range-rate coordinates), we shall present a brief summary of and
a few results from relativistic Hamiltonian optical theory., For this
is the simplest form of wave theory, and the most applicable at present,

A. Refraction Index Theory

Sufficient generality will be introduced if we consider the medium
through which our radio signals propagate to be specified completely
in terms of a scalar refractive index n, which may depend on position
and frequency, v, of the wave relative to the medium, and a four-
velocity vector field U~ which also may be position and time dependent.
These are presumed to be given. In case we have a near perfect
vacuum, n = 1,

* Usually, but not always, one reserves the index value 0 for the time -~
like coordinate. :
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A wave front is specified by a surface in spacetime
which has.a covariant normal 4-vector, K., also known as the 'propa.-
gation vector, frequency vector, or wave-number vector. The latter
designation is to be preferred since if one makes an arbitrary dis-

placement dx , 21 times the number of waves passed in making it is
by definition '

do = K dx'

1.

Thus dp is the phase Change in the displacement; we shall assume

‘the existence of a definite phase function ®. (coherent waves) so that

Note that in the simple flat space recté.ngula.r coordinate system case,

'-Ko-ﬁis' 2n/ctimes the frequency measured relative to an observer at rest

in this system; K; , 3 are the negative components of the usual 3-
dimensional propagation vector, times 2m. But in any case the proper
frequency of the wave relative to the medium is given by
K U
. 1
\) =

am

.Let ut be the 4-vector components of the motion of a point associated

with constant phase and moving "with" the wave. Its direction coincides

with the generators of ¢ = 0. Then

specifies that it is normal to the gradient of ®g furthermore, since all

material velocity vectors are of length c in spacetime, iU| = ¢; and
by the definition of ¥, we have, with U = g, uJ,
U u o= c.z.

The spatial part of the velocity vector 4 relative to the material'medi'um
is '

—_ —_ -

v =u - U
gsince U is timelike. The phase velocity 1s the wvector uco whlch_ mini-
mizes |v1 subject to the foregoing conditions. The corresponding length
v of ¥ is called the phase speed. - '
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We find that

v _ K (cz/Zn-\é)+(n2-1)U"

u
® 0’
‘and
c2 2 - : 2 i |
= =n“=1-%& K' [c /(K, U’y ]
v
L (M N -
a formula which is given by Synge’ °, . Since K = 3 «, this yields a

partial differential equation ( eikonal ) for the pﬁase function ®. In
fact, we may write it in the form :

— - _-L'
0 bs09)= 8 73 wd9=0

where

s ._ > .
g Hos g't*]_- + {n -l)Ut U‘]/c2

can be regarded as a new ''metric' tensor in case .n does not depend

on v (no dispersion)., The quantities 'g” are the contravariant components
of the usual metric tensor.

The use of this "metric" gives rise to the terminology ''optical
distance''--and its introduction is related to the earljr "4/3-earth"
s::once}')t(8 » and similar homologous space notions (9,10,11,12) whereby
investigators have tried to replace the solution of propagation problems
in physical spacetime with a variable refraction index, by their solution
in a different spacetime with a different--perhaps a constant--index.

(B) Hamilton's Principle _ .

One now pictures spacetime as a manifold of events, which is perme-
ated with the aforementioned material medium. At each point-event, xt,
there is visualized a '"metric null cone' whose apex is at the event.

(See Figure 1}). Its equation is ‘ '

QEgtjdxth«_—O

and it delineates, locally, events (end points of the vector dx) which
separate the past events, associated with x' from the present ones, and
the present ones from the future ones. There is also another cone of
events, the 'light cone"”, described by

O=g, dx' d%) = 0
which also has its apex at x'. It coincides with the metric _cr_)ne‘o'nly_

if n =1, "We note that

gtj = gtj -(1-1/n%) U, Uj/c
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— e ]
A,
—

Past] {x) -

Figure 1: The metric null-cone, G, and the light phase-wave-front,
o, associated with an event x in {2 + 1)-spacetime for n £ 1. Also
indicated are the relations for normal dispersion between phase and
group velocities and speeds, and the wave-number vector. The classes

of events comprising the past, present and future of x are shown.
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Onée frustum of this cone coincides with a phase front éonvergingon xt;'
the other coincides with a phase front emanating from x'. The Ysurface"
% (x, X}=0coincides with this cone -in the neighborhood of x. .

Now the optical rays of this system are curves which do not
necessarily coincide with the generators of the light cone. They are
curves which extremalize the phase difference @ between twa events,
subject to the equation defining phase speed in terms of refraction
index. Thus the principle >

_5@=511%dxt:0'
' 2
P & 2
a =g" KK ¥+ (n -el)(KtUt/c) -0

Ieads to the differential equations of the rays:

1

dx° _ 3Q dK: _ 23Q
. " 3K dx ~  oxt °

1
The ray velocity is

s dx’ dx
U B e =
T. di dr
: 1
its spatial component normal to U has a length equal to the ray speed
v, relative to the medium, and so

ut u =-(_:2
Tr 1

which serves to define

dr U1. 3q

. - T2 3K
: Sc

Ad

1

The result of all this is that the phase front satisfies the eikonal or

Hamilton-Jacobi equation, _
O (x, 3p/3x) = 0

as before, and the ray velocity is

v Ktcz/Zﬁ\) + (o -14+nn'y) u'

u

r a{n+n'yv)
where
n' = 3n/3v.
The ray speed turns out to be
' . ' , / d{nv)
v - —————
r 3V

which is identical with the group speed in such a dispersive medium.
One sees immediately that, if the medium is not dispersive, i.e. n' = 0,
the phase speed and velocity become identical with the ray speed and
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vel{)city-—a weil-knqwn resuvlt. If the ray speed is less than the phase
speed, the dispersion is normal, and if greater, the dispersion is

anomalous. To maintain causality we require that v < ¢,
: #

(C) The General Doppler Effect

It is appropriate. to ‘conclude our discussion  of basic"”prihcipl'es _
with a description of the general Doppler effect--for this effect relates
measurements of velocity and range to measurements of frequencies-

“and time——the_ basis for the entire sequel. Consider two observers,

A and B, moving quite generally at some distance from each other.
At the moment when A's spacetime velocity U, has components U}’L’
let him send a signal to B, This signal corresponds to a phase 3.
When this happens, let A's clock read the proper time 7°° and let
B's clock read T when this phase front reaches him. If

x;& ('rA) is A's position

and
! B C, ' ‘s
Xn {t ) is B's position
for these two events, we know that the phase front function ¢ defined

by ' B
| Qp{xA (TA_),_. xB (T B)}:f Kt dx* = 0
A.

since the same wave front passes through A and B. A moment later

a different phase signal corresponding to the vglue 2 + A% is sent at
time % + dr® and received at time T° + dr™. But since ©» measures
the difference in phase between two events in a wave region, we again

have
cp{xA('rA+d'rhA), xB('rB+d'rB)}= 0
Now _ -
—%—E—-: \)AdTA = Vg d'rB

where v, and v are the prdpef ffequencies of the radiation observed
at A and at B respectively. Consequently we conclude that

' ¢ 1
3 U | K (B)}U

d'rA_\)B atcp. B _ t() B

B v 1y \
A
dr A atch'A K {(A)U',

This is the general Doppler relation between the proper frequency at
B and that at A,
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IV. Range and Range-Rate Systems: Null Coordinates in Spaéetime'
We are in a position now to define operationaily and .discuss in
detail the properties of a particular class of spacetime cooi-dinate.s.
They can be used to measure the components of the gravitational field
plus refraction index and material velocity field, i.e. the light cone
components g i they can be used to determine the range and coordi-

a particle, And these'_measuremer}ts are all relatable to frequency and
© time measurements made in terms of standard devices and systems
carried in suitably moving reference vehicles.

{A)  An Example

As a first very simple example, we shall consider motion only
in one spatial dimension, and shall assume that the refractive index
n =1, and that spacetime is flat (no gravity).,” For this situation the
phase function is simply '

P = (XO“XO)Z -..I(X'-X')Zk

where:

X'z %, X' = X

are the coordinates of two arbitrary events..

Let us consider a reference vehicle situated at the origin of the
x-axis. Its trajectory in these coordinates is

x° = XO(T) =crT

x'= X'(1)= 0

- where 7 is the proper time as read off a standard frequency generator
and clock carried by the 'vehi'cle-—it happens, for this simple case, to
be the same as the "fixed star' time t. We wish to associate readings
on this clock with the position of a particle "having arbitrary coordinates,
{x°%, x') and associate frequency measurements with the velocity com-
ponents of a particle moving arbitrarily in (1 + 1)-spacetime. '

Light or radio signals sent from the reference vehicle can be
scattered back to it from the particle in question, and the times and
frequencies of these sent-and-received signals fxgﬁeasgred_. Let a signal
be sent at time TO and received back at time 7", and let the corre- -
sponding ffequen_cies be Vs and vi. See Figure‘_Za. o
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Figure-2a: An example
for {1 + l}-spacetime

~ T 3

0=/

Figure 2: Null coordinates T_:, and frequencies v _. assotciated with a

. particle moving with velocity U at event E, which has the general posi-
]{ tion coordinates x . The cone is shown as a(2 + 1Y - dimensional cone
instead of a (3-+ 1)figure, for simplicity in the drawing. The third

i - spatial dimension is suppressed. ’

.
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Now since_

St
H]
——
s
H
o
-3
*j
St
]
b
S
1l
o

. . Q '
e can determine the coordinates x and x' from the measured times

x* = de(r® 4 TT )
o (1)
x'= 7 et ~1%)
or . . C e
x" = Ye(r® 4.7
1 o - (1I)
X' =3 et -7

The ambiguity can be resolved if one knows whether x' ig positive or
negative, One of these sets, say the first (I}, co'nsl‘.itutes a trans-
formation equation from the x!? coordinates to the T !set, Using . {¢t ,
one may easily calculate relations between quantities described in either
coordinate system. The metric tensor has components

(1 O)
gzj; 0 -1

in the original rectangular system, and components
_ (_o Ly
- RCE IR I
1 . . .
in the T --or range system. Hence the metric expression is

G 2

(@x°)% - (ax')

= c®dr® 4.7

in the two systems,

Similarly, consider the particle at x°, x') to be moving with
spacetime velocity components _ '
U° = &x°/dr = cdt/dr
- U = dx'/dt = dx/dT ' |
(Note: dt/dr= 1/VY1 -(\r/c)2 , where v = dx/dt is the usual speed of

the particle; also df = ‘s/(dxo')z - (dx")¢ /e =V dr%darT. ) These can
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be transformed to the ra.ngeasystém, and yield

If a phase difference
| dp= v dr’
o)

is recorded at the sender, where Vs is the frequency of the signal as
sent, the frequency observed at the particle will be v, where -

. .0
vdTr = v=drT
o

and at the receiver it will be V- where

Hence we see that

The velocity components in the range and range-rate coordinates are
simply obtained in terms of the measured frequencies.

Other simple examples have been worked out. The motion of the .

standard reference vehicle has been made more ‘general in rélation_ to
~the x'!-coordinate system. An example in three spatial dimensions
and one time dimension, ignoring gravity effects and refraction, and
with speciél reference vehicle motions has béen considered. But those
general principles underlying the range and range-rate system which

are illustrated.above can be just as easily derived in the rather general

case, which follows.
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(B) The General Dispersionless Case . :
| .Let ¢ {x,x') be the phase function defined in the foregoing sections.,
It measures the difference in phase of a signal sent from event x' to

event x, so that if the two events experience the same phase, they are
on the same wave-front, and : |

Qp.(x, X‘) = O‘.
Let there be three reference vehicles moving in arbitrary’ but
known ways. See Figure 2. These vehicles carry identical standard
frequency and time generating and measuring equipment. Their motions
may be des.cribed in terms of some convenient set of coordinates by

0, 1, 2, 3)

where Ty in each case, is the proper time recorded on the corresponding
vehicle's clock. Since there are just three vehicles, we require in
addition that '

Xé('r)a X;('r).

Let x';_: be general spacetime coordinates in this system of a particle
when some event E happens to it. Then the wave-front, or light "cone"
with apex at E intersects the trajectories of the reference vehicles at
various proper times. We are assuming no dispersion {n' = 3n/3v = 0)
- 50 that the ray (or group, ' or signal) velocities coincide with the phase
velocity~-and the signal trajectories coincide with the light cone gener-
ator curves. These are shown dotted in Figure 2.

If a signal is sent from vehicle 0 (=1) at its proper time reading
79 this signal is scattered from ,&he particle at E back to o and to 2
and 3, being received at times T°, r1‘2,'aa.nc1 T respectively.  If the
carrier frequency of the original signal is v— , it will be Doppler
shifted during the scattering because of the retlative' motions of the
reference vehicles and the particle velocity Up, We suppose its

frequencies as received to be Vi V3 and Vi

1. ‘Range . ‘
~ Now because the event E and the signal transmission and reception
events lie on the same wave-front (light cone), we can write

—

cp(?) EQP(KE: X?(Tt))': 0, (_{.: 0, -i-s‘z! g)

These are four equations to determine the general cootdinate va.lueS'xEt:
of E, in terms of the measured ''range coordinates' 7°'. From its
definition, we know that '

de (x, X/ B_xt = =3 (x, X)/ 3X t.
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So by differentiation we find the transformation coefficients between the
x- coordmates and the- range coordmates to have the values

L

aed 3 L 9(T) Uk_. (7)

k
The quantities Uy (1) are the velocu:y cgmponents in the x-system,
of the tth reference vehicle at its tlme T

Uk:("{")_ dX (7))
R - d'r 1

T=1T

In order for the inverse transformation to exist we Ssece that the
determinant

o0 (T)| #0.
Now we remember that Ktz 3 and 21y = KtUt. Hence
: 1
3t i Kj(t)
aXJ ZTT\)';

The contravariant light cone tensor components are particularly
interesting to calculate in the range-system. We find, according to
the general tensor transformation law, that " :

_13
_1.]' g (t)K (J) 2

g = e,
2
417 \)'-. \J'j'

C.Z is simply a convenient normalization constant Since g "K (t)K (1,)'-
is the basic eikonal equation for ®, we see that

When n = 1, this means that gl "= 0 and the metric for range
coordinates has a vanishing diagonal and six non-vanishing components,
in general. This identifies this class of coordinates with Synge's class
of "null" coordinates, . It should be noted that the components of the
inverse matrix to g tJ  can readily be calculated, but the expressions
are too lengthy to include here.

2. Range-rate — : -

Suppose that in time ar° we have v=dT waves emitted from
the sender of vehicle (U - 1). These are scattered off the particle at
event & and sent back to the sender and to the other two reference
vehicles, If the frequency Vi is observed at E during time dTE, and
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measured as V3 V3, Vo at the other receivers in times drT-, dT—,
d'rg respectively, then we have - : . !
ey K Y 2 3
_g -y d = y—=dal. o_ N .
v oar VedrT __vi__dfr v>dr vzdr

Now we know that the spacetime velocity vector ,of the particle at E is
of length c, in spacetime, s0 that .

DR
Vg Uggiz=c
But T "
1 dr E
U = C = C
E -
E s v‘t
so that .
1 37
_\)2 _\)?\)? -

These very basic results show that the velocity components- of a pa'rfti_cle
in the range and r'arige'-'rat_e coordinates are detérmiha_,blé entirely in
terms of frequency measurements at the reference vehicles. Of course
the metric gyt must be known--but the last formula suggests a method
for measuring” these six components. If one makes a determination

of v and the v for six arbitrarily moving particles in the neighbor-
hood of event E, then he may calculate the gT-J,. from these measurements.

By a transformation of coordinates using the components 3T t/E):»:‘],
or the inverse matrix, one can determine the components of ‘quantities
relative to the x ' -coordinate system. We should note that to do this,
one must have a knowledge of the Kt_ ~-vector at the standard reference
vehicles,

{C} Error Estimates

Although we certainly cannot in this brief article present an
exhaustive treatment of error analysis, it is perhaps instructive to
write down certain preliminary relations. Assume the errors in coordi-
nate determinations to be uncorrelated. Then from the transformation

formulas, we may deduce .2
- K.{(1) . 2
LT

: 2TV~ By
_ J .t

as the relation between the mean square errors in coordinate determi-
nation. Next the observed frequency errors and those encountered in

determining g;‘-‘]':' » are related by




8\)E L2 gEE 5\)3 . 5\)-12 ] 3'1*;
R BT T =i
Finaily 7
BUE LY .&\)..
R Y T e
UE R 1

(D)  Conclusions _

The analysis and results contained herein suggest that an extensive
investigation be made of the possibilities of practical utilization of null
coordinates. Certainly many interesting problems remain from a
theoretical point of view. The complete specification of the wave
number vector field in terms of frequency and time measurements
is one. The extension to the case of dispersion is another. The
solution of the eikonal equation in the presence of various gravita-
tional and refraction index fields is another. Applications to specific
spacetime navigation problems are highly desirable. '

220




V. . References

1. "Anailysis of the Range and Rahge Rate Tracking Systerri"‘, R. O.
Vonbun, IRE Transactions on Space Electronics and Telemetry
(June 1962) pp. 97-106.

2. ""On Some Special Coordinate Systems in General Space-Time',
J. L. Synge, Bulletin of the Calcutta Mathematical Society (1960).

3. "Relativity: The General Theory", J. L. Synge, North Holland
Publishing Company (1960), p. 187.

4. J. L. Synge, loc. cit., pp. 408 and ff.

5. "General Relativistic Red Shift and the Artificial Satellite' .
~ B. Hoffman, Phys. Rev. 106, # 2, (April 15, 1957), p. 358.

6. '"Hydrodynamics", H. Lamb, Chap XII, pp. 697 and £f.

7. "Relativity: The General Theory', J. L. Synge, North Holland
Publishing Company (1960), pp. 376.

8. J. C. Schelleng, C. R. Burrows; and E. B, Ferrell, Proc. IRE
2], #3,(March 1933), pp. 440-442, 456-461.

9. C. L. Pekeris, Phys. Rev. 70, #7, § pp. 518-522, (October 1946.)

10. "Propagation of Short Radio Waves", J. E. Fréehofer, MIT Radiation
Lab. Series 13, p. 12, pp. 50-53, McGraw Hill (1951).

11. "Terrestrial Radio Waves'', H. Bremmer, Elsevier Publi‘shing Co.
Inc., New York (1949), p. 137-ff.

12, "Peripheral Ropagation of Radiation Through an Inhomogeneous
Spherically Layered Atmosphere", G. E. Hudson, Smyth Research
Associates, Report 32, San Diego, California, ( April 1959.)

13, "The Theory of Space, Time, and Gravitation'", V. Fock, Pergamon
Press, New York, (1959). ' .'






